Calculation of Fracture Mechanics Parameters for an Arbitrary Three-dimensional Crack, by the ’equivalent Domain Integral’ Method1
نویسنده
چکیده
In this paper, an equivalent domain integral (EDI) method and the attendant numerical algorithms arc presented for the computation of a near-crack-tip field parameter, the vector Jε-integral, and its variation along the front of an arbitrary three-dimensional crack in a structural component. Account is taken of possible non-elastic strains present in the structure; in this case the near-tip Jε-values may be significantly different from the far-field values Jf , especially under non-proportional loading.
منابع مشابه
Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کاملDelamination of Two-Dimensional Functionally Graded Multilayered Non-Linear Elastic Beam - an Analytical Approach
Delamination fracture of a two-dimensional functionally graded multilayered four-point bending beam that exhibits non-linear behaviour of the material is analyzed. The fracture is studied analytically in terms of the strain energy release rate. The beam under consideration has an arbitrary number of layers. Each layer has individual thickness and material properties. A delamination crack is loc...
متن کاملDamage Assessment using an Inverse Fracture Mechanics approach
This paper studies the application of an inverse methodology for problem solving in fracture mechanics using the finite element analysis. The method was applied to both detection of subsurface cracks and the study of propagating cracks. The procedure for detection of subsurface cracks uses a first order optimization analysis coupled with a penalty function to solve for the unknown geometric par...
متن کاملNURBS-Based Isogeometric Analysis Method Application to Mixed-Mode Computational Fracture Mechanics
An interaction integral method for evaluating mixed-mode stress intensity factors (SIFs) for two dimensional crack problems using NURBS-based isogeometric analysis method is investigated. The interaction integral method is based on the path independent J-integral. By introducing a known auxiliary field solution, the mixed-mode SIFs are calculated simultaneously. Among features of B-spline basis...
متن کاملاستفاده از روش غنی شده بدون شبکه گلرکین در تعیین پارامتر های شکست صفحات FGM
Stress-intensity factors (SIFs) are the most important parameters in fracture mechanics analysis of structures. These parameters are evaluated for a stationary crack in functionally graded plates of arbitrary geometry using a novel Galerkin based mesh-free method. The method involves an element-free Galerkin method (EFGM), where the material properties are smooth functions of spatial coordinate...
متن کامل